PAPER ABSTRACT
Gördes Dam is a nickel and cobalt mine tailings dam situated in a seismically active zone in Manisa Province, Western Turkey. The dam is a conventional cross valley earthfill structure with a fully lined storage basin. The starter embankment with a maximum height of 50 m will be raised in downstream lifts to an ultimate height of 90 m. The total storage capacity is 19 million m3. Construction of the starter embankment is planned to commence in late 2012 and the dam will be commissioned in June 2013.
The tailings will be discharged from the dam crest and return water will be collected by a floating decant pump at the opposite site of the storage. Decant water has high calcium sulphate levels and will require treatment before re-use in the plant or release. The tailings contain about 33 % of solids and are classified as high plasticity silts and clays with more than 90 % of particles passing the 0.075 mm sieve.
The dam is founded on a complex formation of altered sedimentary and metamorphic rocks including mudstones, siltstones, limestones and serpentines. The mudstone blocks, the predominant foundation materials, are juxtaposed with siltstones and serpentines via a complex arrangement of faults. Where exposed, the mudstones are highly to completely weathered with a well-developed structure of smooth bedding surfaces leading to anisotropic strength characteristics. Several landslides, likely associated with the anisotropic character of the mudstones, were identified within the area including a significant landslide under the upstream shoulder of the dam.
Mining development in Turkey has a complex legislative environment. There is also standard practice which is not legislated but expected, this can be considerably different to normal design practice in Australia. The Turkish legislation is based on waste management guidelines and may be more appropriate to landfills than large tailings storages. The legislation is very prescriptive in some aspects and silent in others, with little consideration of risk or consequence based design.
This paper discusses the design difficulties associated with the challenging foundation conditions, which have been magnified by the requirements and limitations embedded in the approval documentation and the legislative environment in Turkey. It will also address some of the key differences between the design philosophy in Australia and in Turkey with a focus on the major risk elements of the design.
Authors:
Dr. Mark Locke, Jiri Herza
Published in:
ANCOLD 2012 Conference
Perth, Australia